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Formal Assessment of Problem-Solving and Planning
Processes in Preschool Children

DaviD KLAHR AND MiTCHELL ROBINSON
Carnegte-Mellan University

While much 15 known about adult problem-solving, the maierials, analyses, and
theoretical ssues from the adult literature rarely make contac! with the tasks
typically used to investigate children’s thinking. ‘This paper examines the behavior
of4-. 5--and 6-year-ald children allempting to solvea novel vartani of the Tower
of Hanot task, Problems vaned in difficulty (one to seven moves for the mimimum
path solution) and 1n goal type: tower (all objects on one peg) or flat {all pegs
accupied). For each problem, children gave verbal statements of their complete
solution plan. The Plan Analysis examined performance asa function of goal type
and age. Better performance was observed for tower ending problems, and among
older children. The Error Analysis revealed that specific error propensitics were
related to both age and goal type. The Strategic Analysis compared the first move
profiles of 6-year-olds to those of several plausible move selection models, and a
high degree of correspondence was obtamned between specific models and ndi-
vidual children. Young children appear to have rudimentary forms of many of the
problem-solving processes previously identified n adufts, but they may differ i
encoding and represeniational processes.

How do children become proficient problem solvers? In order to an-
swer this question, we need to obtain precise and accurate descriptions of
the problem-solving methods used by children at different developmental
jevels. We know that by the time they are adults, most people have
acquired a rich repertoire of problem-solving methods such as means-
ends analysis, search, evaluation, and planning (c.f., Egan & Greeno,
1974: Jeffries, Poison, Razran, & Atwood, 1977; Newell & Simon, 1972;

‘Simon & Reed, 1976). However, with few exceptions (e.g., Baylor &

Gascon, 1974: Greenfield & Schneider, 1977), the tasks typically used to
study young children’s reasoning processes do not address these aspects
of problem-solving. For example, the overwhelming favorites in neo-
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szagetian investigations are class-inclusion, transitivity, and conserva-
tion. Underlying successful performance on each of these tasks are deci-
sion F}IEES that determine which of two quantities is greater, rather than
anything that could be construed as a strategy for constructing a path to a
ﬁfzai gpal (c.f., Klahr & Wallace, 1976). Nor do most of the many other
Ptageltan tasks designed to assess the child’s knowledge of the physical or
soc:a{ wnrlfi address issues of constructive, goal-seeking behavierh Thus
it seems fair to say that much remains to be discovered about ho'w chEE:
dren solve probiems.

In this paper we present a description and analysis of the performance
of preschool children in a difficult problem-solving situation: a variant of
the well-known Tower of Hanoi (TOH) puzzle (Simon, 1975). The TOH
has weii-dt.zﬁned initial and final states, and a set of legal operations that
‘when applied in the appropriate sequence, can transform the initial statt;
into the final state. The problematical aspect derives from the fact tha‘l the
sequence of operations is not immediately apparent to the young problem
solver, but rather must be produced through some combination of trial
and error, systematic search, testing, planning, and so forth. Qur basic

question concerns the nature of the youn ild’ ]
g child's problem solvi
respect to such processes. i ne it

TASK DESCRIPTION

. The ‘fs.tandard" version of the TOH consists of three pegs and a

pyramid’ of n disks of decreasing size from bottom to top. The disks
start D’EH on one of the pegs, and the goal is to move the entire n-disk
pyramid to an_other peg, subject to two constraints: only one disk can be
moved at a time, and at no point can a larger disk be placed above a
smaller d_:sk on any peg. The minimum number of moves for an n-disk
problem is 2"-1. The task conforms to the definition of a well defined
pro_blc?m (Newcf} & Simon, 1972), in that it contains unambiguous de-
scriptions of an itial state, a final state, and legal moves. The difficulty

lies in discovering the se
’ quences of legal moves that transform the ini
configuration into the desired one. mital

Related Work

1We know of only two prior studies of young children's performance on
tl’fas task. In both cases, young children were found to perform poorly.
;’:zget (1976) used 2-, 3-, and 4-disk problems with children from about
he- to i2-years-old. He reports that most 5- and 6-year-old chiidren

cannotAmove the three-disk tower even after trial and error. They do
succeed in moving the two-disk tower, but only after all sorts of attempts
:o_a getﬂaround the instructions and without being conscious of the Iog:’Eal
links.” (p. 288) From this performance, Piaget concludes that **none of these
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subjects make a plan or even understand how they are going to move the
tower™ (p. 290), and later, “Thereis...a systematic primacy of the trial-
and-error procedure over any attempt at deduction, and no cognizance of
any correct solution arrived at by chance.” (p. 291}

Byrnes and Spitz (1977) used 2-disk {3-move) and 3-disk (7-move) TOH
problems in a comparison of retarded and nonretarded children. Their
nonretarded subjects ranged from 6- to 11 years old. On the 2-disk prob-
lem, the 6- and 7-year-olds made errors on about one-third of the trials,
and the older children were nearly perfect. Almost all of the younger
children failed the 3-disk problem, and even the older children could not
solve it more than half of the time. A subsequent study including sub-
jects up to college age was recently reported by Byrnes and Spitz {1979).
Group averages on 2- and 3-disk problems showed abrupt increases be-
tween the ages of 7 and 9 and agan between 11- and 15-years-old.

Thus, all of these studies find that only with difficulty can children
around 5- or 6-years-oid solve the 2-disk problem. This is a rather curious
result, because the 2-disk problem requires only that the subject remove a
single obstacle, the smaller disk, and place il temporarily on an unused
peg in order to move the large disk and then the small disk. It is about the
most rudimentary problem that one couid pose. The results are also curt-
ous because, even an infant can remove a single obstacle to achieve a
desired goal {Gratch, 1975). Furthermore, casual observation of young
children coping with their daily circumstances suggests that they are ca-
pable of solving '‘problems™ in familiar environments requirmng 3 or 4
“moves’” (such as getting a chair to reach a cabinet containing a string {0
tie on a doll).

We believe that preschool children do indeed have a greater problem-
solving capacity than has yet been revealed. In this study, we attempted to
construct a version of the TOH that would be sensitive to such capacities.
At the same time, we wanted to guard against the problem of false positive
interpretations. The steps we took to mcrease task sensitivity included
modifications of the materials themselves, presentation of partial prob-
lems, prior familiarization with the materials, and a motivating cover

story. Our attempt to guard against false positive assessment consisted of
requiring the child to present a plan for his entire move sequence rather
than simply making moves one at 2 time. All of these procedures will
now be described in more detail.

Children's Version of the TOH
For use with young children, we modified the task in several ways that
changed its superficial appearance while maintaining its basic structure.

Materials. We use a set of nested mverled cans as shown 1o Fig. i. The cans fit 50
foosely an the pegs that when they are stacked up it 15 impossible o put a smaller can on top



116 KLAHR AND ROBINSON

Child’s side
|Goal Statej——=

Experunenier’s side
{imtal state} —=

FiG. i. Child seated in front of ** Monkey Cans'” working on a I-move problem. {State 2t0
State {: see Fig. 1.}

of a jarger can. Even if the child forgets the relative size constramt, the matenials provide an
obvious physical cansequence of attempted violattons: little cans sumply fall off bigger cans.
Furthermore. the matenals are mtuitively more “reasonable’” in two regards. First, unlike
the standard problem where small disks may obstruct furger ones, with these malenals,
bigger cans obstruct smaller cans, either by siting alop them or by bemg on a goal peg.
Second. larger cans not only sit on top of, but also partially contain the smaller cans.

Externalization of final goal. In addition to the mitial configuration, the goal—or
target—configuration 1s always physically present. We set up the child’s cans 1n a target
configuration, and the Expenimenter's cans n the witial configuration. Then the child 15
asked 1o tell the Experimenter what she (the Experimenter; should do i order o get her
{Expenimenter’s) cans to look just like the child's.! This procedure 15 used to elicit multiple-
move plans: a child is asked to describe the complete sequence of moves necessary ta solve
the problem.

Cover story, Problems are presented in the context of a story in which the cans are
monkeys (large Daddy, medium size Mommy, and small Baby}, who jump from iree to lree
{peg to pegs. The child’s monkeys are m some good configuration, the Experimenter’s
monkeys are “"copycat” monkeys who want to look just like the child’s monkeys (more
details on the cover story are given below). The cans are redundantly classified by size,
color, and family membership tn order to facilitate easy reference. Children find the cover
story easy to comprehend and remember, and they readily agree to consider the cans as
monkeys. The remaimng variations are best described after considering some of the formal
properties of this task.

Formal state properties

Figure 2 shows all possible legal states and moves for these materials. It
is called the *‘state space.”’ The 27 umque configurations are arbitrarily

' All prenorunal reference n this paper uses “'suie”’ for the expermmenter and “‘he”
for the subject.
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Fic. 2. State space of all legal configurations and moves for 3-can problem.

numbered in a clockwise direction, starting at the top. Each state is one
move removed from its neighbors, and the can that is moved 1s indicated
by the number on the line connecting adjacent states. The solution to a
problem can be represented as a path through the state space. For exam-
ple, the minimum solution path for the problem that starts with all three
cans on peg A and ends with them on peg C is shown along the right-hand
side of the large triangle in Fig. 2, moving from State I to State 8. The first
move involves shifting the iargest can (can 3) from peg A to peg C,
producing State 2. The next move places can 2 on peg B (State 3), fol-
towed by a move of can 3 to peg B (State 4), and so on.

Reduced problems. Another task variation we introduce is to present a
range of problems requiring from ! to 7 moves for solution. (There are no
two stales for which the minimum path solution requires more than seven
moves.) There are no dead ends in this task—any state can be reached
from any other state—so that it is possible to choose from a large pool of
unique problems (702 to be exact), simply by picking an arbitrary mitial
state and final state. Thus, although all problems involve three cans, some
require only one move to solution (e.g., State 23 1o State 6), some two
moves (e.g., State 20 to State 1), and so on. By varying path length we can
present children with probiems of substantially different difficulty.

Flat ending problems. The **standard”™ TOH problems always end (and
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start) with all the cans stacked up on one peg, we call these *‘tower-
ending’’ (T-end) problems. In the six states indicated by the large squares,
circles, and hexagons in Fig. 2, all pegs are occupied. We call any problem
that ends in one of these states **flat-ending” (F-end). Our final variation
on the standard TOH is the use of F-end as well as the more commonly
used T-end problems. The F-end problems provide a good test of the
generality of the child’s solution strategies. None of the previous formal
analyses of the TOH have considered the relative difficuity of T-end and
F-end problems. As we shall see, for the children in this study, F-ends
were much more difficult.?

Subjects

All but a few of the children attending the Carnegie-Mellon University Chiidren’'s School
participated in the study. There were 19 children each m the "d-year” (mean 4.0; range 3-6
to 4-5) and **5-year’’ {mean 4-11; range 4-6 10 5-1) groups, and 13 in the “g-year {(mean 5-10;
range 5-6 10 6-3) group. The educational program for the two younger groups 5 designed asa
preschool program and for the older group as a Kmdergaren. The children come from
predomunantly, but not exclusively, white, middle-class backgrounds. There were approxi-
mately an equal number of boys and girls at each age level.

Procedure

Since our youngest subiecls were only 3% years old, we attempted 10 make the tesung
sessions as pleasant and stress-free as possible. Children were tested in a small playroom,
adjacent to their regular classreoms, which was equipped with closed crrcust video tape
fucilities. About 6 months earlier (in the preceding Fall semester) each child had spent aboul
2 hours mn the room while engaged in activities unrelited to the problem-sotving task. Then
about 2 months after that, all the children had worked with a 24-1tem senes of TOH problems
in which the experimenter actually made moves, one-at-a-time, under the direction of the
children. However, no direct insiruchion of evaluauon was provided.” The experimenter was
a 24-year-old, white female who interacted with all the children as a teacher throughout the
year.

After being brought into the room, the child was again familianized with the matenals
shown in Fig. i, m the context of the following cover stoty.

Once upon a lime there was a blue niver (Expenmenier porits 10 space between
rows of pegs). On your side of the niver there were three brown trees. Can you
count your trees? On my side there were aiso. . . . ete. On your side there lived
three monkeys: a big yeliow daddy {present yellow can and place on pegh a
medium size blue mommy, (present and place), and u liftle red buby. The monkeys
tike to jump from tree to tree {according to the rulesf: they live on your side of the
siver. (Establish egal and illegat jumps.} On my side there are also three: a daddy,
etc. . . (Introduce Expenmenter’s cans.} Mine are copycat monkeys. They want to
took just like yours, nght across the river from yours. Yours are all stacked up like

* We suggest that the reader Iry 10 solve the State | 10 Stale 8 problem--a 7-move tower
ending problem—and then State 10 10 State 20—a 7-move flul ending problem. Most people
find the latter harder.

3 Some §- and 6-year-olds had participated n pilot studies with the TOH n the previous
year.
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s0. . . [state 1], mme are like 5o jstate 2 or 21]. Mine are very unhappy because
they want 1o fook like yours, but right now they are a tittle mixed up. Cun you tell
me what 10 do so mine can look like yours? How can 1 get my daddy across from
your daddy, {etc.}? {The actual scnipt 18, of course, more elauborate. 11 s available
upor request.)

During the mitial part of the familianization phase, the child was allowed to handle the cans,
but was gradually dissuaded from domg so. He was mstead encouraged 1o tell the exper-
menter what she should do 1n order to get her cans to look like the child’s.

The full set of problems is shown i Table |. Each row of the table fists the problem
sumber, the mitial and final state numbers (corresponding to Fig. 1), the problem type
{T-end or F-end), a numencal representation for the witial and final configurations and the
sequence of moves for the mimmum path solution. {For example, in Problem 5, the first
move 1s 10 move the middle-size can from the nghtmost peg to the center peg—2CB; the
second move takes the largest can from the lefumost peg 1o the nightmost peg—3AC).

Hy the ume the familisnzation phase ended, the child had been given the first {our
problems (all requinng one movet and had soived them (with correction if necessary). For
these problems, the expenimenter actually carned oul the child's iastructions and moved her
cans.

The remainder of the experiment was run i a *pure plannmg” mode: for each problem
the child told the expenmenter the full sequence of proposed moves, the experimenter gave
supportive acknowledgment (or encouragement if the child was stuck} but did not move the
cans. and then the next problem was presented. As each problem was being set up, the child
turned away from the cans or shut his eyes until the expenimenter said “ready.’”

In our previous work with the TOH (Klahr & Wallace, 1976}, the children’s suggested
moves were aclually executed—either a move at a time, or at the end of the full plan for each
problem. However, this procedure provided the child with information about the efficacy of
his initial problem-solving strategy, and frequently led to improvements aver the course of
the experiment. In the present study we wanted (o mimmize such iearning, in order o obtain
a more stable assessment of base-line performance.

As shows (n Table 1. the full set of 40 problems consists of four problems having mimmum
path leagths of £, 2, 3, and 4, and eight problems each with path lengths 5, 6, and 7. For each
path length, half the problems are T-ending and half are F-ending. Problems were presented
i 1wo blocks with only T-ending problems i one block, only F-ending problems in the
other. Children were randomly assigned 1o one or the other block order {F-T or T—-F).

Within a given block. mcreasingly difficult problems were presented m the order listed in
Table 1. until the child appeared Lo reach his upper limit. There were several mdicators of
this upper limit: {a} explicit statemenis of confusion or mability to continue; (b} abrupt
violation of rules of the game (e.g., puttmg monkey 10 the nver); (¢} sudden loss of moliva-
tion: {d} consistent errors i planned moves. At this pouwat, the session was termnated.

The tme required to run through the 20 problems in a block ranged from 20 to 45 min. In
some cases 4 block was run 1n two separate sessiens, while m other cases—especially with
the younger children—only a few problems beyond the practice phase were completed, and
the session took only about 18 mun. All sessions for each child were run within a perniod of a
few days.

PLAN ANALYSIS

The raw data on which we base our analysis consist of detailed tran-
scripts of videotape recordings of all sessions with all children. Two
examples are shown in Table 2. The transcriptions inciude information
about timing, backups, errors, corrections, restarts, and the child’s own
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TABLE 2
Two Protocols and Plan Encodings
Problem 25: kIl T 2.
tnitial goal
move result
32y . {mitial}
What you do 1s you put the daddy {3} .. .
What you do 1s you move the daddy (3) over this tree
{points to C),
and move and move the baby . .
and then you move the mommy (2},
wait; where could you move the mommy (2) to 2,
well first move the mommy (2} on this tree {poiats to O) 28C ¥ uz2
then put the daddy ¢3) on thit tree (pomnts to C) JAC 4 uil
and put the baby {1} aver there (pomts 10 A, 1BA i /32
Then how would the mother? . .
and after you put the baby (1} over here {points to A}
you could put the daddy {3) {points to B} ics 32
then you could put the mommy (2} aver the baby, 2CA 21 3
and the daddy over the mommy. iBA 1T VA A,
Problem 29: ¥ J2 32v_
ital goul
3 2 {1t}
Oh, that. O.K. That's easy.
Just take the yellow one (3) and put it on there {B),
Take the {ponting to 20C3} . . . and take . . . and take,
take the ba . . .
Mo, take the blue one (2}, put 11 on there (BJ, 2CB ¥ui
and then, then take the yellow (3}
and put it on the blue {pomts toward C, then to B), 3AaB WEYIEE
and then take the red (1) one and put # on here {A). ICA 132 .
And then take the blue ¢2) one
and . . . no, and then . . . and then put the yellow (3)
one here (C), 3BC a3
and then put the blue one (2) on the red one, IBA 20 43
and then put the yellow one on the blue one. ICA »v /.
Can 3 Yellow Daddy
Can 2 Blue Mommy
Can i Red Baby
S0 .
A B C
Pegs

alt o
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rhetorical questions. For the plan analysis, we use only the final planned
move sequences, encoding them as shown on the righthand side of Table
2. (Recall that no cans are actually moved during these protocols, so all
the “‘results” except the initial and final ones are imagmned rather than

real.} Both of these protocols would be scored as perfect 6-move plans.?

In determining the maximum planning fevel for each child we use a very
strict criterion: at a given problem length every plan must be the minimum
path solution. (For all but problems 35 and 36, the mimimum path solution
is unique.) For example, to be classified as passing the 5-move planning
leve! on T-ending problems, a child would have to produce the minimum
path plan for probiems 17, 20, 22 and 23.° Note that we do allow the
utterance of illegal or nonminimum path moves, as long as they are recog-
nized by the child and self-corrected, ultimately producing the correct
solution path.

Tower-ending and Flat-ending problems were analyzed separately. The
proportion of subjects in each age group producing correct plans for all
problems of a given length 1s shown in Fig. 3a for T-ending problems and
Fig. 3b for F-ending problems. Note that the abscissa mn Fig. 3 15 not
overall proportion correct, but rather a much more severe measure: the
proportion of subjects with perfect plans on all problems of a given fength.
For example, 9 of the 13 (69%?) 6-year-olds were correct on all four of the
S-move problems, while only 3 of the 19 5-year-olds (1693 and 2 of the 19
4-year-olds (11%) produced four flawless 5-move plans.

i There 15 some question about the extenl to which this s a plan in the sense used by
Newell and Simon {Chap. 10, 1972), since 1 15 at exactly the same fevel of detail as the
solution itself. Further ambigusty anses from the likelihood that some of these utlerances
appear lo be produced concurrently with the solution process, while others are probably
immediate retrospecuve reports on problems first solved silently. For purposes of this
analysis. we will use the term “plans’ rather than the more cumbersome—albeit more
accurate—' " verbalization of proposed move sequences.” {For a detailed examination of the
effects of verbal protocols on the problem-solving process, see Ercsson & Simon, 1586}

“The probability of a random responder bemng msclassified s gxceedingly slim. 1f we
consider only legal moves, for all problems texcept 33, 34, 38, and 403, the probability of the
correct first move 1s %. For all moves after the first. the correct move probability 15 12. (We
exciude the option of moving the can just moved—if we include it the probability of any
move bemg correct drops to ¥4). Thus for a 5-move problem the probability of the correct
solution s ¥*(14) = 1748, and for all four of the 5-move problems {assuming independence
of solution paths} it 1s (1/48) = 19*10-". Similar computations show that this probability vanes
from approximately 7*10°7 for the first two 3-move problems to 7*10° 1t for the four T-move
problems. One mught argue that this 15 a gross overestimate of the power of our test, since it
assumes nlermove and mterproblem independence. For aduits, or for children actually
making moves, i is reasobable 10 assume & much more ughtly construned solution path
(c.f.. Anzit & Simon, 1979). However, for children m plenning mode, both illegal and
impossible moves can be generated and the number of potentiul alternatives at each branch
can be reasonably argued to be at fcast six {see error analysis section befow), rather than the
conservative twao or three used here.
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Fis. 3. Proporiton of children producing perfect plans. (a1 T-end problems; (b} F-end
problems.

What is striking—given results of previous studies with children on this
task—is the absolute level of performance. On the T-ending problems,
over two-thirds of the 5-year-oids and nearly all of the 6-year-olds con-
sistently gave perfect 4-move plans, and over half of the 6-year-olds gave
perfect 6-move plans. Almost half of the 4-year-olds could do the 3-move
problems. Recall that these plans are verbal descriptions of transforma-
tions of hypothetical future states. Furthermore, all intermediate states
are different from, but highly confusabfe with, the two physically present
states (i.e., the mitial and final configurations).

A different picture emerges with F-ending problems. One-third of the
youngest children could not do anything beyond a I-move plan, and
barely one-third of the 5-year-olds could reliably do the 3-move problems.
Although the 6-year-olds did much better than the two younger groups,
their scores were also substantially below their T-ending levels.

Individual subjects were assigned a planning level according to the
maximum probiem length for which all of their pians were perfect. Table 3
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TABLE 3
Number of Children at Exch Plannng Level

Planning level on
F-end problems

Planmng {evel on
T-end problems

Group N [ 2 3 4 5 6 7 1 2 3 4 5 & 7
4-year-olds 9 6 4 ] P9 20 7 i i 0 0 0 9
fA-yearolds 19 0 3 I [ | 2 0 0 3 2 3 0 1 0
¢, ~4-year-olds 13 0 i ¢ 3z 6 1 0 I i 3 4 2 0
Total 51 6 8 9 4 3 W t 1T 27 4 & 4 3 0

shows the number of children at each planning level for T-end and F-end
problems. These planning leve! assignments form a Guttman scale, so that
any child classified at a given level could solve all problems at or below
that level. Since we were unable to detect any effect of presentation
order, the results in Table 3, and all subsequent analyses, are collapsed
across order.

The effects of goal type and age on planning level are very strong.
Planming level scores for tower ending problems were greater than those
for flat ending problems for 35 of the 51 children. Relative difficulty was
reversed for only 4 of the remaining 16, and 12 children had equal planning
levels on T- and F-end. problems.

The effect of age on planning level was analyzed separately for tower
and flat ending problems. A median test (Siegel, 1956} revealed a signifi-
cant effect of age for both types of problems {(tower ending i = 15.42, flat
ending x3 = 17.89, p < .00D,

Between-age group comparisons were made using Cochran’s (1954)
method for decomposing the chi-squared table. For both tower ending and
flat ending problems, the distribution of the scores of the 4- and 5-year-
olds were not reliably different with respect to the median x} = .13, p >
.5, and x? = 2.95, p < .10, respectively. However, together they were
both different from 6-year-olds xi = 15.29, xi = 14.93, respectively, both
p < .00l. A separate companson of the scores of 5- and 6-year-olds sup-
ported this conclusion ¥} = 4.26, p < .05. The distribution of planning
scores shift from below the median to above it with age, mostly among the
6-year-olds.® Some children classified at level 1 were in fact below that
level, since the 1-move problems were treated as practice and often solved
with the Experimenter's assistance. Thus, these chiidren might justi-
fiably be viewed as simply unable to do the task. All 2-move problems

* Dividing the plannmg scores alternatively mto groups below the median and equal 1o or
above 1t retains the overall age effect, but the grouping changes, with 5- and 6-year-olds
better than the 4-year-olds, but not reliably different from each other. Thus, there s support
for an overall age effect, but the position of the 5-year-alds 1s ambiguous.
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require only that the two moves be performed in the correct order, but
there are no obstacles in the way of either move. The first problems
requiring removal of an obstacle-—~and hence the generation of the subgoal
to remove that obstacle—are the 3-move prabiems. The column sums 1n
Table 3 indicate that on T-end problems, only 8 of the 45 children who
could solve 2-move probiems could not get past this hurdle, while for
F-end problems 27 of 44 were stymied at this point.

All 4-move problems start with the move of a can directiy to its ullimate
goal peg. Thus, 4-move problems should be negligibly harder than 3-move
problems, and we should find very few children classified at level 3 (Le.,
able to consistently soive 3-move, but not 4-move probiems). Although
this occurred in an earlier study (Klahr, 1978}, it was evidenced here only
by the 6-year-old group. For T-end problems, there are no level 3 planners
in the oldest group, whereas ten of the thirty eight 4- and 5-year-oids were
so classified. For the F-ending problems there is a slight dip at level 3 for
the two older groups.

An abrupt decline occurs between level 6 and level 7 (10 out of 11 fail
here) for T-ending problems. Recall that m all previous studies, young
children almost never solved the 3-disk (7-move) problem. Neither did our
subjects. However, if the problem is presented with the first move "'al-
ready made’ —reducing it to a 6-move problem—then about 20% of the
preschoolers can solve it perfectly four out of four trials.

Summary: Plan Analysis

The aggregate analysis of pians has produced two major findings—one
reiating to absolute performance, the other to the effects of goal configu-
ration. First, it is clear that by the time they are ready for First Grade,
many children can produce plans up to six moves in {ength, even in an
impoverished and arbitrary task domain. Second, the relative difficulty of
formally equivalent problems (same materials, rules, state space, and path
length} depends upon the form of the goal configuration. For F-end prob-
lems, it is not immediately apparent in which order the final configuration
will be attained: mn Problem 38 or 40 which can will reach its ultimate
destination first? However, for T-end problems (e.g., 37 or 39}, it 1s clear
that the smallest can will have to reach the goal peg first, then the middle
size can, and so on. Thus, one explanation for the differential difficuity of
F-end and T-end problems is the extent to which the external matenals
facilitate the generation of subgoals. Another 1s that children’s strategies
mteract with the goal configuration to make one type easier than the
other, without any intrinsic difficulty being attached to either type of
ending,

In order to get a better understanding of how such subgoals might be
generated and used, we need to go beyond the agpregate anaiysis pre-
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sented thus far. Although it has yielded a picture of what children can do
with these problems, it has not addressed the issue of what they know,
i.e., of what problem solving strategies they use. In the next section, we
will describe some procedures we have used to generate and evaluate a
set of models for children’s strategies on these problems.

FIRST MOVE ANALYSIS

Perfect plans reveal those cases in which a child can access and execute
an appropriale strategy. However, in order to characterize children's in-
adequate strategies, we need to search for regularities in all of their plans,
inciuding the mcorrect ones. Production of perfect plans makes severe
demands on the child’s ability to mamtain a mental representation for a
changing configuration. A child with a correct strategy might produce a
flawed plan if, in the course of execution, he forgot the focation of some of
the cans or neglected to describe some of the moves he knew were neces-
sary. Since successive moves within each plan are increasingly suscepti-
ble to such failures of memory or production, we use the child’s first move
on each problem in our attempt to infer solution strategies.

Note that while the first move analysis ignores all subsequent moves on
a given problem, we can view the first move of every n-move problem as
the second move of some other n + 1-move problem. Thus, the first move
analysis does provide information about the complete planning process.
This will become particularly clear in the section on strategic analysis.

We used two levels of aggregation for the first move anaiysis. Forerror
analysis, we aggregated across subjects within each age group, focusing
on the types of nonoptimal moves and the circumstances under which
they occur (see Augmented Problem Space, beiow}. The error analysis
suggests some of the strategic variations that the children might be using.
For the strategic analysis, we focused on individual subjects, attempting
to account for each subject’s pattern of first moves over the entire prob-
lem set.

Error Analysis

Augmented problem space. The state space in Fig. 2 shows only legal
moves. For the purpose of an error analysis we augment this space to
include not just legal moves, but any other type of move that a subject
might want to make. If there were no constraints at all, then at any state,
the subject might produce a move composed of any of the 27 = (3cans x 3
“from’’ pegs X 3 ‘‘to"’ pegs) combinations. Eliminating impossible moves
(moving a can from a peg other than the one it 1s on} reduces the space to
nine possible moves, but three of these are stationary (from a peg to
itself). Thus, for the augmented problem space, we consider six possible
moves (3 cans X 2*'to"’ pegs) from each state. For all but the three tower
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F1G. 4. Two examples of the avgmented problem space with goal gradients,

states (1, 8, and 15) three of the six moves are legal; of these three legal
maves, only one would be optimal. Two examples are shown in Fig. 4.

Our augmented problem space mncludes one additional characterization
of each potential move: the extent to which the move changes the number
of cans on their respective goal pegs. This goal gradient can be positive,
negative, or zero. For example, for the augmented problem space around
the initial state for problem 9, shown in Fig. 4a, the move 2CB would
increase the number of cans on their goal pegs from two to three, so the
goal gradient is positive (although the move is illegal). The optimal move,
3CA, has a negalive gradient, since it reduces the number of cans cor-
rectly placed from two to one. For probiem 13, there are three moves that
might produce a positive goal gradient (1CA, 2BA, and 3BA). One is
illegal (ZBA) and one is optimal (1CA).

For all problems requiring more than two moves (problems 9 through
40}, we scored all first moves into the categories shown in Table 4. Opli-
mal, legal-nonoptimal, and illegal moves have already been described.
“(Other” moves is a residual category including partial moves {(e.g., 3A7),
conglomerate moves {'both of them to A'"), and ambiguities in the pro-
tocols. It is sufficiently noisy to warrant excluding it from further
analysis.

The main entries in Table 4 show the total number of first moves in each
category by age and problem type. For example, of the 187 instances in
which 6-year-olds generated first moves for T-end problems, 96 moves
were optimal, 74 were legal, but nonoptimal, 8 were iliegal, and 9 were
“other.”” Since the number of problems presented to each child was de-
termined by his performance, there are fewer responses for the younger
children than for the older. The last two rows in Table 4 indicate, for
example, that if each of the 19 4-year-olds had been presented with all 16
of the T-end problems beyond problem 8, there would have been 304
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TABLE 47
Number of Occurrences of Optimal, Nonoptimal, and Hlegal First Moves, by Age and Problem Type

3. moves
51

I F Moves
51

F-end
&-year-olds
i3

S.year-olds
19

4-year-olds
19

I T Moves
51

T-end
G-year-olds
13

5-year-olds
3

d-year-olds
9

n

Expected®  Group

frequency

Type

8X45) 96(31) 214(43} 3H34) 7442} 6642) 172040} IR6(42)
2044

15(28)¢
33N

16

Optimal

BB(55) IT440)
114(12)

81(46)

T4{40) 170034} 33030
g )

57(31)

26

Legal, nonoptimal

IElegal
Other

4515

X3}

1]
159
208

2X 13} 4) 66(13) 242%)

3528y

36

546)
928
1632

82}
432
s

A7)
178
04

44}
95
304

4&5)
496
816

%5)
187
208

2}

184

1&13)
125

304

Total first moves

304

Possible first moves

7 Parcent of total first raoves shown in parenthesis

* Relative frequency of move type in augmented problem space

129
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responses, instead of only 125, and if the 13 6-year-olds had completed the
full set of 16 F-end problems, there would have been 208 rather than 159
responses.

‘Entries from Table 4 are plotted in Fig. 5 as a percentage of ail unam-
biguous moves (optimal, nonoptimal, and illegal) made by subjects in each
age group. Figure 5 also shows what the expected frequency for each of
the three move types would be if subjects randomiy chose one of the six
alternatives from the augmented problem space. For the two oldest
groups, F-end problems turn out to be harder, even on the first move,
with respect to the relative frequency of optimal (i.e., correct) moves.
However, problem type does not affect the reiative frequency of illegal
moves.

The oldest children rarely choose illegal moves, and they choose opti-
mat and nenoptimal moves about equally. The 5-year-olds show a slightly
greater tendency to choose illegally.

The youngest children are only slightly affected by problem type. This
could simply result from the fact that the 4-year-oids were exposed to
many fewer of the harder problems—and thus to less structural
variation—ithan their older classmates. Although they were well above
chance in choosing optimal moves on the easy problems that they did get,
thg 4-year-olds were much more likely to make illegal moves than older
chlldren. Apparently, many of these 4-year-oids did not fully understand
either the constraints of the problem, or the reporting regimen. By far, the
most freguent illegal move for the 4-year-olds was to attempt to move a
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can directly to its goal peg when it was covered up by another can. This
error could be due to a lack of understanding of the move constraint, or it
could be a confusion between reporting a goal (e.g-. ultimately getting the
can to its final destination) and a move (*'move it there now' .

In the error analysis so far, we have considered only the most global
structural property; the type of ending configuration. We can get addi-
tional information about why subjects make errors by looking at some of
the structural relationships between current and final configurations. One
type of common error occurs on states having a configuration that is
neither a tower nor a flat. All such configurations have the general form
(xy/_iz), and the common error is to move can x to the empty peg. (Of
course, on some problems, this is the optimal move: thus on Problem 26,
2BC is not an error, whereas on Problem 9, 3CB is.} With T-end prob-
jems, subjects are likely to make this **flat error’’ slightly more than other
kinds of nonoptimal moves, with F-end problems they make it five times
more frequently than other errors. These ratios are essentially unchanged
across the three age groups. If the flat error were simply the result of a
local heuristic to move to an unoccupied peg, then it would be expected lo
occur with equal frequency for both types of final configuration. How-
ever, the overwheiming preference for flat errors on F-end problems
suggests that children tend to use a globai evaluation of the shape of the
final configuration. Since, at the global level, the flat error always pro-
duces a configuration approximating the goal (even though different 1n
detail), it 1s a very tempting move.

We suggested earlier that the T-end problems might be easier because
the subgoal order was implicit in the final configuration. Some additional
support for this conjecture comes from an analysis of all problems with a
current configuration of a Z-can stack not on the goal peg and a T-end.
When they err on these problems, subjects prefer, by a two to one margin,
to move the smaller, rather than the larger, of the two cans directly to the
goal peg. Although either move would have a positive gradient, it appears
that the T-end facilitates the creation of a subgoal ordering according to
can size, and that subjects are affected by this subgoal stack.

Finally, what can we say about the effect of the goal gradient? The most
revealing indication of its role comes from an analysis of nonoptimal
moves: those with positive gradients are chosen almost 80% of the time.

Three features of this error analysis suggest that we might be able to
understand even more about the children’s behavior if we analyzed their
first moves from a different perspective. First, we have treated effects of
problem type, gradient, etc., at a very aggregale level, and with only a
minimum of sensitivity to particular relations that exist between imtial
and final states in different problems. Second, we have had to posit sub-
jects” use of goals, strategies, and heuristics, but we have not been at all
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explicit about such cognitive processes. Finally, we have been completely
insensitive to individual differences beyond the occasional age aggrega-
tions. In the next section we shall attempt to remedy these deficiencies.

Strategic Analysis

On every move, the child must decide which can to move and where to
move it. A stable set of rules for making these decisions constitutes a
strategy which produces, over the entire problem set, a charactenstic
*profile”” of moves. (For the reasons given earlier, in this paper we will
examine only first move profiles.) The basic idea underiying the strategic
analysis 1s that, given a set of plausible strategies, we can compare each
subjects first move profile with the profiles generated by each strategy
over the same problem set. For each subject, the strategy producing the
best matching profile is then taken as the strategy used by that subject.
This sort of profile matching has been used to assess children’s rule 1n-
duction strategies by Klahr and Wallace (1970), and it has been applied to
characterizing children’s knowledge in a wide range of conceptual do-
mains by Siegler (1976, 1978), under the rubric *‘rule assessment meth-
odology.”

We assume that well before they encounter the TOH problems, young
children have at least the following two general principles for transform-
ing their environment from one state to another.

PI: If you want object X to be in location B, and it is currently in
location A, then try to move it from A to B.

P2: If you want to move object X from A to B, and object Y is in
the way, then remove object Y.

In addition, we assume that children have an even more general principle
that guides all of their goal oriented behavior:

P3: If the thing you are doing is too hard, then do some part of it
that is easier,

The question of interest in this investigation is how children assimilate the
TOH situation to these very general principles. The strategic analysis
consists of describing a series of move selection models thal might result
from this assimilation process and comparing their predictions with sub-
jects’ behavior.

The move selection process can be decomposed nto a series of dect-
sions corresponding to the TOH nstantiations of the general principles:

(a) Subgoal selecnon: which of the cans not on its goal peg should be attended
1e next?

(b Obstructor detection and remtoval: if the subgoal move can’t be made, then
which of the obstacles should be moved, and to where?
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(¢t Effort determunation; how much effort should be allocated to achieving the
current subgoal?
We will explicate each of these in turn, and then incorporate their various
forms in a series of move selection models. Close examnation of each
subject’s protocol suggested that different aspects of these decisions were
combined in quite distinct ways by different children. The 9 models to be
described represent our attempt to explicate particular combinations of
decision processes that might account for the behaviors we observed.

Subgoal selection. In the more difficult of our problems, where none of
the cans are initially on their goal pegs, there are six (3!) possible prefer-
ence orders that might be used to select subgoals. As mdicated in the
Error Analysis, subjects appear to use a smallest to largest (1, Z, 3) order
most frequently, but not exclusively. It can be shown that this 15 equiva-
lent to a heunistic of always attempting to solve the most difficuit problem
first (since can | is the most constrained) and that it would produce an
optimal solution for a means-end strategy. Another way o select subgoals
derives from a forward search strategy. First see which subgoal can be
achieved in one move. If there is one, select it; if not, see what can be
done m two moves, and so on.

Obstructor detection and removal. If the subgoal can be attained di-
rectly, then there is no problem. But if it is biocked by one or two cans
either on top of it (on the **from™ peg) or on its goal peg (the ‘1o’ peg),
then a new subgoal must be created to move one of those cans. The move
selection modeis embody important differences in the way this obstructor
detection occurs, ranging from no detection at all to a recursive proce-
dure.

Effort deternunation {(depth of search). Each move in the TOH problem
is selected with respect to a sequence of moves computed to achieve a
specified subgoal. In our problem set, the length of such sequences vary
from |, in which the subgoal 1s achieved directly, to 4, in which three
preparatory moves must be made first. For example, in a {ower to tower
problem, i order to achieve the first subgoal of moving can 1, three
moves are required to remove the 2-can stack from the top of can 1. If the
number of required moves exceeds the depth to which the child is willing
or able to search, then he cannot compute the first move of a subgoal-
achieving sequence. He can then do one of two things. He can apply a
default rule, or he can sefect a new subgoal to work on. Our models differ
in their depth of search capacity, and in what they do when tLis exceeded.

Rather than list the formal rules used by each modei, or the computer
programs used to simulate model performance, we will simply give a brief
description of each model and a list of its first moves.” Table 5 shows those

T The models are implemented i MACLISP, & varant of LISP. They are available upon

request. People with access to the ARPANET can address inquines o Dr. Kiahr, CMUA,
Pittsburgh, PA 15213,
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first moves for all models on the 3, 4, 5, 6, and 7 move problems. For the
sake of clarity, Table 5 actually contains—for models 1 to 8—only moves
that differ from those made by model 9. Reference to Table 5 should
resolve any ambiguities that may exist in the descriptions to follow.

Model | ignores the problem constraints: it makes direct moves to the
goal peg, regardless of any obstructors. This was typical of many of the
youngest subjects, and reflects the extent to which they totally ignored
the constrainis on moves. Subgoal selection: choose the smallest can
which is not on its goal peg. Obstructor detention: none. Search depth: no
search.

Model 2 is highly susceptible to the immediate salience of the physical
configuration. The top obstructing can on the *from"" peg is simply placed
on an empty peg, without any consideration of subsequent effects. Sub-
goal selection: choose the smallest can which is not on its goal peg.
Obstructor detection: detecis only those cans on top of the can to be
moved; selects the topmost can on the “*from’™” peg and moves it to an
emply peg. Search depth: no search.

Model 3 and Model 4 both use some means-ends analysis, but they are
limited with respect to their ability to respond to the difficulties they
detect. Each model is sensitive to obstructors on both the “‘from™ and
“to"" pegs; they differ only in which peg they prefer to clear first. If
obstructors exist on both pegs, Model 3 decides Lo remove the “*to’’ peg
obstructor, while Model 4 focuses on the ‘*from™ peg. They both select
the top can on their chosen peg. The next question is: where to place the
chosen obstructor? Both models have the generalized concept of
“other.”” For any {wo specified pegs, the models can designate the
third—as yet unspecified—peg. They produce a tentative target peg for
the obstructor which is the “‘other™ of the ““from’ and '‘to’ peg. For
example, on Problem 25 (3/21/. — 321/_/_), Model 3 generates the goal
IBA; it selects can 3 as the primary obstructor, and decides to move it to
C—the “‘other”” of A and B. Model 4, on the other hand selects can 2 as
the obstructor, and chooses to move 2BC. Before making the move how-
ever, both models check to see if it is itself blocked. If it is, then instead of
moving the obstructor to the illegal peg, it is moved to the “"other’’ of the
obstructor's source peg and the illegal peg. Thus in problem 39 (2/1/3
— 321/_/.3, both models would initially choose 2AC, but they would
notice its illegality, and instead produce 2AB. Subgoal selection: the
smallest can nol on its goal peg is selected first. Obstructor detection:
both the *‘from’ and the *"to” obstructors are detected; Model 3 prefers
the “*to"" can, and Model 4 prefers the “*from’ can. Move the obstructor
to the ““other” peg if legal, otherwise to the "‘other™ of “other’” and
obstructor peg. Search depth: one level to check legality of obstructor
removal.

Model 5 uses a limited, breadth-first search. First it looks for a direct
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legal move that will get a can on its goal peg (using the {, 2,3 subgoal or-
dering). If no such move can be made, then it looks for a 2-move sequence
that might get a can to its goal peg. On problem 9 (1//32 — 1/2/3), Model
5 discovers that although can 2 cannot be moved directly to its goal peg,
a 2 move sequence {3CA, 2CB) will succeed, so it chooses 3CA as the first
move. On problem 10 (1/_/32 — 321//_) it discovers that it can move can 3
directly to its goal peg in a single move, and it chooses to do so. Subgoal
selection: By move length, and within move length, by can size. Ob-
structor removal: Not relevant. Search depth: up to two moves.

Model 6 uses a limited depth-first search. It is similar in structure to
Model 5, but the priority ordering on can selection and search depth 1s
reversed. Model 6 chooses a can according to the *'smallest first” prefer-
ence order, and then seeks to achieve its goal in one or two moves, hefore
moving on to the next can. On problem 17 (/ 31 — 321/} it looks
first for a {-move sequence that will get can | on peg A. Failing that, 1t
retains the can 1 goal, and now looks for, and finds, a 2-move sequence
(3CB, ICA). Subgoal selection: By can size, and within can size by move
length. Obstructor removal: same as Model 5. Search depth: lwo moves.

The effects of the difference between Model 5 and Model 6 are shown in
Table 6. On probiem 33 the models select different moves, while on prob-
fem 18, they choose the same move, but for different reasons.

Model 7 is sensitive, but faint hearted. It can detect all the obstructors
to its preferred subgoal. If there are none, it makes the direct move. If
there are any, it simply decides to move the largest can (can 3) to a peg
that won't black the *‘from’ peg of the current subgoal (or the "'t10”" peg
either, if possible). On problem 21 (32//1 — 1/2/3), it initially wants to
move 1CA., but since that move is blocked, it chooses 3AB. On problem
28, (21//3 — _/_J321), its imtial goal is 1AC, but cans 2 and 3 block that
move, so it chooses 3CB. On problem 35 (¥1/3 — 1/2/3}, having detected
an obstructor to the 1BA subgoal, it decides to move can 3. Forced to
choose between 3CB, which would block the “‘from™ peg, and 3CA,
which would block the *‘to™ peg, it chooses the latter. Subgeoal selection:
smallest first. Obstructor removal: detects all, but chooses to move three
to nonobstructing peg. Search depth: one level.

Model 8 is similar to Model 6, but it has an additional level of search.
That is, it does a 3-move depth-first search, using the standard subgoal
order. On problem 34, a tower-to-tower problem, it cannot find a 3-move
sequence that wouid get can 1 to the goal peg. It then focuses on can 2,
discovers the sequence 3BA, 2BC, and chooses 3BA as the first move.
Note that problems 18, 19, 21, and 24 present similar difficulty with the
can-1 subgoal, and in each case, Model 8 focuses instead on the can-2
subgoal. Subgoal selection: Same as Model 6. Obstructor removal: Not
relevant. Search depth: 3.

Model 9 is taken from Simon’s (1975} **sophisticated perceptual
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TABLE 6
Trace of Models 5 and 6 on Problems 33 and 18

Model 6

Current goal:

desired sequence length:

Ry

Model 5

sy

320

Problem 33

{10 A

Desired sequence length:
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fail

fail

lto A

current goak:

fail

desired sequence lengih:

fait

210 A

current goak:

210 A

Current goal:

desired sequence length:

Jto A succeed

current goal:

fail

2B

3BC.

desired sequence length:

select: 3BC

select: 3IBA

123

—_—

/4321

Problem 18

Model 6

Current goal:

desired sequence length:

Model 5

Ito A

Desired sequence length:

fail

fail

1to A

current goal:

fail

desired sequence length:

fail

210 B.

current goal:

Desired sequence length:

2toB

Current goal:

desired sequence length:

fail

fail

ito A
2o B

current goal:

ICA. 2C

desired sequence length:

select: 3CA

CB

ICA,

current goal:

select: 3CA
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strategy.’’ It recursively attends to the minimum obstructor by moving it
to the **other’” of the immediate{y preceding subgoal. On probiem 35 the
sequence would be: Goal IBA, blocked by 2. Move 2 to “'other” of BA;
subgoal 2AC. Blocked by 3. Move 3 to “‘other’” of AC: subgoal 3CB.
Choose 3CB. This strategy produces the mimimum path solution {(and thus
the **correct’ first move} on all problems but 27 and 32, where it adds one
extra move.

Evaiuation of Models

Since all models perform nearly identicaliy on the - and 2-move prob-
lems (1—8), these easy problems provide little diagnostic power. All of the
analysis, therefore is based on the criterial set of the last 32 problems
(9-40). The basic measure we use is percentage of first moves correctly
predicted.

Model—model performance similarity. The previous discussion treated
mode! similanty in terms of subgoal ordering, obstructor detection, and
depth of search. In order to assess the similarity of the performance of
each model, we computed the number of times each model chose a move
identical to every other model. Table 7 shows the percentage of identical
first moves selected by all pairs of models among Models 3 to 9 on the
criterial set and on selected subsets of problems.? The first column in
Table 7 is based on the entire set of 32 criterial problems. The three pairs
of models that are structurally quite similar (3—4, 5—6, and 6—8), are also
fairty simiiar in performance {78, 81 and 81% identical moves, respec-
tively). But the highest similarity measure comes from a pair of models
that do not, on the surface, have much in common: 3-—7 (84%5). Further-
more, 3—-6 and 4—8 choose the same first moves on 75 and 78% of the
problems, respectively.®

This “‘unexpected’” similarity exemplifies the point made by Simon
(1975): quite different strategic variations can produce functional equiva-
lence. Simon’s analysis of the TOH focused on equivalent oprimal
strategies, while our anaiysis of children’s performance has discovered
some functionally nearly-equivalent nonoptimal strategies.

* As might be expecied, Models | and 2 matched the other models less than 50% of the
larne.

® Hit rates above 70% are extremely significant.” A model that randomiy generated first
moves 1 the augmented problem space would have an expected hit rate with any other
model of 1765 {1/6), und one that generated only legal moves would have an expected rate of
335 But the probability that randomly generated legal moves would achieve a hil rate with
any given model of at least 72% (23 hits on the 32 crienal problems} s

f\il{(?) (%)f (%)']mo
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TABLE Y
Model—Maodel Similarity (Models 3—9). Percent ldenticai First Moves for Model Pairs
on Cntenal Problem Set and Subsets

All Flats Towers Easy Hard
Maodel par (32) {16} (s (16} {161
34 78 81 75 93 63
3-5 36 62 50 43 69
45 46 68 24 50 42
3-6 75 62 88 68 82
46 63 68 62 75 55
5-6 81 100 62 15 87
3-7 84 gl 87 100 68
4-7 68 75 61 53 43
51 59 56 62 43 5
6-7 78 56 100 68 88
3-8 62 62 63 68 56
4-8 78 68 87 73 81
5-8 62 87 k) 75 50
6-8 81 87 74 100 62
7-8 59 43 15 68 50
3-9 37 25 49 68 06
4-9 53 3 75 75 3
5-9 43 50 36 75 il
6-9 50 50 50 100 g
7-9 34 18 50 68 0
§-9 68 62 75 100 37

The degree of similarity depends on the problem set. A glance at Table
5 shows that there is littie difference among models on the easiest prob-
lems. In order to assess the effect of problem type on model similarity
more formally, we split the criterial set in two different ways: Flats vs
Towers, and easy (3, 4, and 5 moves) vs hard (6 and 7 moves). Model
similarity was then computed on each of these subsets. The results are
shown in the last four columns of Tabie 7.

For some model pairs, functional equivalence is extremely sensitive to
problem subset, while for others it is fairly stable across subsets. For
example, the 65% similarity between Models 4 and 6 over all problems
does not change much for Flats, Towers, easy or hard problems, whereas
Models 6 and 9 choose identical first moves on easy problems and com-
pletely different moves on hard problems.

Since the longer problems generally provide more opportunity for the
models to respond to obstructors, they tend to provide the most diagnos-
tic power. All but 5 of the 21 pairs among Models 3 to 9 have higher simi-
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larity measures for the set of shorter problems than for the longer ones,
and Models 6, 8, and 9 are functionally identical for the shorter set.

Finally, it is worth noting that none of the nonoptimal models comes
very close to being correct (i.e., matching Model 9) most of the time.
This is particularly evident in the last column of Table 7, which shows
model~model fits on the harder problems.

Muatching Individual Subjects

First move profiles for all criterial problems attempted by the 6-year-
olds were compared with each model's profile for the corresponding set.
Table 8 shows the ‘‘hit rates’'—the percentage of identical first
moves—for each of the 117 subject—model pairs. For example, on 55% of
the 29 problems he attempted, Subject | and Model 4 selected the same
first move. Model 4 aiso malched 70% of Subject 2's 24 first moves and
85% of Subject 4’s. Overall, individual model-subject hit rates range
from 6 to 90%. For individual models, mean hit rates across subjects
range from less than 17% for Model 1 to almost 70% for Modei 8.

The analysis reveals that quite distinct, but identifiabie, strategies were
used by the children. The weakest child {Subject 6 made only nine re-
sponses, and was best fit by Model [ {the most simple minded), with a hit
rate of 77%. Subsect 11 made 13 responses, and was best fit by Model 2, at
the 76% level. Again, Model 2 is intended to characterize children who
were just a little beyond minimal levels of performance. At the other
extreme, Subject 7 gave optimal responses on nearly all of the problems;
he was fit by Model 9 on 90% of his first moves.

This leaves us with 10 subjects who generated error profiles of poten-
tially high diagnosticity. For these 10, one is best fit by Model 4, two by
Model 6, and seven by Model 8 (ties with Model 8 are resolved in its favor,
for parsimony). Thus, three models account for the 10 subjects with a
mean hit rate of 78%: nine out of the ten fits are greater than 70%."

Since the last half of the criterial set has higher diagnosticity than the
first, we repeated the analysis on just the last 16 problems (25—40). The
general pattern is pretty much the same, except that Subject 10 is now
best fit by Model 4 rather than Model 9 and Subject 14 becomes equally
well fit by Models 3, 6, and 7. The mean hit rate for the 10 midrange
subjects drops to 70%, and only 5 of the 10 fits are better than 70%
(although 9 of the 10 are better than 60%).

in order to assess the robustness of these fits, we split the criterzal set
into subsets containing just odd or even numbered problems from the

1 Recall that the probability that a paricalar model will match a random responder above
the 700 level is p, < 10 » The probability that at least ene of the 10 models will have a 0%
hit rate with a subject who is responding randomly i1s p, = P={f=p, " < -4
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TABLE 8
Model~Subject Hit Rates on Criterial Set"*

Response  Model | Modei 2 Maodel 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Subject

KLAHR AND ROBINSON
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* Hit rates < 50% not shown

® Preferred model for each subject in italic
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criterial set, and computed the hit rates on those two subsets. We used the
same procedure for resolving ties as we used with the full set. For all 13
subjects, the best-fiting modei based on either the odd or even subset (or
both) was identical to the best-fitting model based on the full criterial set;
in all but four cases, both the odd and even subsets selected identical
models. In other words, the split-half analysis produced oniy four out ofa
potential 26 anomalies.

In summary, an analysis of each child’s first move profile has revealed
substantial differences in the ability of these models to account for chil-
dren's strategies. Three of the models, although plausible, were elimi-
nated. Model 5 never quite reached a 70% hit rate for any subject, and
Models 3 and 7, when they did exceed 70%, were always dominated by
another model. Models 1 and 2 gave excellent fits for the weaker subjects.
Model 9 fit the best subject very well, and Models 4, 6, and 8 accounted
for the 10 middle range subjects.

Strategic Analysis: Discussion

What can we say about how children make the three key decisions
listed earlier? The models finally selected indicate that all of the children
utilize the 1, 2, 3 subgoal ordering. This could result from either the formal
structure of the probiem, or the integration of social convention with the
semantics of the cover story: *‘baby first, then mother. . . , etc.”

Children differ, however, in their response to obstacles. The Mode! 4
children treat single obstructors appropriately, by removing them to a
neutral peg. When confronted with two such obstructors, they focus on
the more immediate and salient one, that is, the can on top of the peg
containing the can they want to move. Having chosen which obstructor to
remove, the Mode! 4 children manage to keep track of why they want to
move it—i.e., of the original subgoal—long enough to compute the
“other’" of the two pegs involved in that subgoal. But if they discover that
the obstructor elimination move is itself blocked, they do not relinquish
their selected can. Instead they move it to one of the pegs that was
involved in the initial subgoal formulation,

Model 6 systematically proceeds through the subgoal order, seeking
first 1-move, and then a 2-move sequence for the current subgoal. De-
tected obstructors do not generate subgoals for their removal, instead,
that path of exploration is simply abandoned.

Model 8 children search for sequences up to three moves long that
might achieve their initial subgoal. Only when thwarted at this depth of
search do they replace their first subgoal with an easier one.

Recall that these best fitting models are relatively weak compared to a
“‘mature’’ strategy (see Table 7.) On the criteriai set, Modeis i, 2, 4,and 6
make optimal choices on only 9, 43, 53, and 50% of the moves, respec-
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tively. Model 8 is correct 68% of the time. For the hardest 16 problems
these models are—for reasons described earlier—even worse: Model 4 is:
correct on only five problems, Model 6 on none, and Model 8 on six.
Thus, the strategic analysis has clarified the sources of nonoptimal per-
formance. Instead of simply reporting that beyond a certain level of diffi-
culty chiidren make errors, we have been able to specify the major pro-
cesses that generate their behavior.

By eliminating several plausible models, the strategic analysis has en-
abled us to characterize not only what children do know about how to
solve these problems, but also what they do not know. The dominance of
Model 4 over Model 3 indicates a focus on an jmmediate rather than a
r.en?ote obstructor, while the rejection of Model 5 reveals the absence of
limited breadth-first search. Perhaps the most interesting comparison is
between Model 8, which accounted for 7 of 11 children beyond Mode! 2,
and Model 9—the *‘expert’’ model—which accounted for only one. Model
8 uses a 3fmove depth-first search, which, while requiring a systematic
consideration of move sequences, is simpler than the recursive procedure
used by Model 9. The two strategies are only discriminable on those
problems where can I can not be moved to its goal peg in three or fewer
moves (e.g., problems 33—40; see Table 1).

While the depth-first search has the flavor of a rudimentary form of
formal operations, it does not have the subtle requirements of subgoal
management imposed by a recursive procedure. As evidenced by per-
forma_nce on this problem, such abilities appear to be just beyond the
capacity of almost all of our sample of pretty bright 6-year-olds.

DISCUSSION

The results of this study provide clear evidence that by the time chil-
dren are ready to enter First Grade, they have acquired the rudiments of a
nontrivial range of general problem solving methods. Furthermore, they
can appiy these methods to a novel task. This finding raises two opposing
qgesuons: one concerned with why our subjects did so well; the other
with why they did not do better.

As for the first: why have other investigators of this problem concluded
that young chiidren are capabie of no more than trial and error? While
there are many procedural differences between this and previous studies,
we believe that the most important is our use of very fine-grained levels of
differential problem difficulty. Recall that the Plan Analysis indicated that
our children were no more successful with the standard 3-disk (7-move)
problem, than were Piaget's or Byrnes and Spitz’s subjects. However, a
subslgntigi number of them could solve up to 6-move problems. Careful
examination of Table 5 reveals why this is so. Model 8 is nearly perfect
until it encounters 7-move problems; Model 6 starts to err at &-move prob-
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lems, and Model 4 begins to weaken after 5 moves. Thus, the use of prob-
lems whose solution requirements lay between the standard 2-disk and 3-
disk problems revealed some previously undetected problem-solving
abilities.

it is likely that the externalization of the goai configuration also helped,
principally by making it unnecessary to maintain an mnternal representa-
tion of the goal, and thus simplifying the difference detection process. The
net effect of the rest of the task modifications (cover story, familiar envi-
ronment and experimenter, interesting objects, etc.) was to maintain the
children's attention long enough to have them make serious attempts (o
solve the many problems necessary for the profile matching procedure.

Recall that although the 6-year-olds did very well up through 5-move
problems, the majority of 4-year-old children could not produce perfect
plans beyond the 2-move problems (Fig. 3), and even therr first moves
were as likely to be illegal as legal (Fig. 5). One might conclude from this
that the processes we are studying develop very rapidly between the ages
of 4 and 6 years. However, such a conclusion s a bit puzzling when
contrasted with the results from investigations of infants’ search behavior
(Gratch, 1975; Harris, 1975; Piaget, 1954). By the age of 12 months, most
children have no trouble setting aside an obstacle in order to reach a
desired object if it i1s visible. And by 18 months, most can use an object as
a means to an end, such as reaching a toy on a pillow by pulling the pillow.
Thus, the second major question raised by this study is: If children can
solve what we have characterized as a 2-move problem at 18 months, why
do they fail to solve our 3-move problems when they are 4 years oid?

It is tempting to attribute these discrepancies to **decalage’’—Piaget's
name for unexpected failure of immediate transfer. For example, the dif-
ference between infant search and the poor performance of our youngest
subjects on a task requiring verbai solutions could be attributed to vertical
decalage, i.e., a situation in which **action is more advanced than verbal
thought”* (Ginsberg & Opper, 1969, p. 109). Indeed, in a previous study,
we allowed children to move the cans as they soived problems, and the
youngest children’s performance was somewhat better than in the present
study (Klahr, 1978). Of course, the TOH and the infant search tasks differ
in many ways other than the verbal—nonverbal distinction; the perfos-
mance differences may be yet another example of Piaget's horizontal
decalage. That is, this may be a situation in which **Task contents . . .
differ in the extent to which they resist and inhibit the application of
cognitive structures’” (Flavell, 1963, p. 23). However, the decalage label
still leaves open the question as to the nature of the underlying difficulty.

We may begin to answer this question by distinguishing between two
intertwined aspects of problem solving: strategies and representations.
Thus far, we have focused entirely on the former; in these concluding
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comments, we offer some speculations abou! the latter. Throughout the
Strategic Analysis, we assumed that the children’s encodings were
isomorphic to the external display: cans, pegs, positional refations (above
and beriow}, size relations, etc. The explanatory power fay entirely in
strategic variations operating on uniform and veridical encodings. While
Fhis may be a reasonable approach for the 6-year-olds on whom we used
it, it is probably not appropriate for the youngest children.

Indeed, in reviews of the infant search literature, one finds an emphasis
not so much on strategies as on the encoding processes with which the
child constructs an internai represeniation of the environment. Gratch
(1975) provides an abstract characterization of the issue:

When the actor imposes & point of view upon events, then the events tuke on
coherence in terms of the perspective. When events are nol assimilated mto a
framework, awareness of events 1s fragmented. partial, episodic. However, there
are many perspectives that can be taken on events, each affording a different and
limited ordering. To know reality, the sctor must develop a higher level of
perspective, must look at events from muitiple perspectives which themseives are
!Sc;dggd m & larger perspective that permuts the various iooks 1o be ordered. (pp.

- 52N

Harris is more direct: “*Despite the apparent sophistication of the neo-
nate’s perceptual apparatus, object displacement and disappearance are
not encoded in an adult fashion during infancy™ (1973, p. 332).

. Thus, 1 integrating the literature on this fundamental aspect of know-
ing aboul the worid, i.e., the development of the object concept, both
reviewers have focused on the centrality of the development of an appro-
priate representational capacity. The impact on performance of devel-
opmental changes in general encoding and attentional processes has been
emphasized by Baron (1978) and Klahr and Wallace {1970, 1976). Encod-
ing has been identified as the source of developmental differences in
leaming {Siegler, 1976), and even with adults, changes in external forms
of isomorphic probiems produce substantial differences in performance
(Simon & Hayes, 1976). We believe that one possible source of difficuity
for our youngest subjects was the creation of an internai representation
upon which their general problem-solving methods could effectively op-
erate.

General problem-solving methods manifest themselves in rudimentary
form by the end of Piaget's “‘sensory-motor period.”’ They may emerge
from the interaction of an ‘‘innate kernal’' of regularty detectors (Klahr
& nglace, 1976, Chap. B) and primitive encodings of sensory-motor
act)wt{y. While much remains to be learned about the developmental
trajectory of problem solving methods, we know even less about the
devgiopmem of encoding processes. In future investigations of probiem
solving by very young children, it will be necessary lo provide a more

CHILDREN'S PROBLEM-SOLVING 147

balanced treatment of representational and strategic variation. We will
need to direct our attention to the conditions under which task environ-
ments are encoded such that they can be appropriately operated on by the
rapidly emerging problem-solving processes.
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